Thursday, October 22, 2009

Transistor as a switch

The Transistor as a Switch
When used as an AC signal amplifier, the transistors Base biasing voltage is applied so that it operates within its "Active" region and the linear part of the output characteristics curves are used. However, both the NPN & PNP type bipolar transistors can be made to operate as an "ON/OFF" type solid state switch for controlling high power devices such as motors, solenoids or lamps. If the circuit uses the Transistor as a Switch, then the biasing is arranged to operate in the output characteristics curves seen previously in the areas known as the "Saturation" and "Cut-off" regions as shown below.

Transistor Curves

The pink shaded area at the bottom represents the "Cut-off" region. Here the operating conditions of the transistor are zero input base current (Ib), zero output collector current (Ic) and maximum collector voltage (Vce) which results in a large depletion layer and no current flows through the device. The transistor is switched "Fully-OFF". The lighter blue area to the left represents the "Saturation" region. Here the transistor will be biased so that the maximum amount of base current is applied, resulting in maximum collector current flow and minimum collector emitter voltage which results in the depletion layer being as small as possible and maximum current flows through the device. The transistor is switched "Fully-ON". Then we can summarize this as:

  1. Cut-off Region - Both junctions are Reverse-biased, Base current is zero or very small resulting in zero Collector current flowing, the device is switched fully "OFF".
  2. Saturation Region - Both junctions are Forward-biased, Base current is high enough to give a Collector-Emitter voltage of 0v resulting in maximum Collector current flowing, the device is switched fully "ON".

An example of an NPN Transistor as a switch being used to operate a relay is given below. With inductive loads such as relays or solenoids a flywheel diode is placed across the load to dissipate the back EMF generated by the inductive load when the transistor switches "OFF" and so protect the transistor from damage. If the load is of a very high current or voltage nature, such as motors, heaters etc, then the load current can be controlled via a suitable relay as shown.

Transistor Switching Circuit

The circuit resembles that of the Common Emitter circuit we looked at in the previous tutorials. The difference this time is that to operate the transistor as a switch the transistor needs to be turned either fully "OFF" (Cut-off) or fully "ON" (Saturated). An ideal transistor switch would have an infinite resistance when turned "OFF" resulting in zero current flow and zero resistance when turned "ON", resulting in maximum current flow. In practice when turned "OFF", small leakage currents flow through the transistor and when fully "ON" the device has a low resistance value causing a small saturation voltage (Vce) across it. In both the Cut-off and Saturation regions the power dissipated by the transistor is at its minimum.To make the Base current flow, the Base input terminal must be made more positive than the Emitter by increasing it above the 0.7 volts needed for a silicon device. By varying the Base-Emitter voltage Vbe, the Base current is altered and which in turn controls the amount of Collector current flowing through the transistor as previously discussed. When maximum Collector current flows the transistor is said to be Saturated. The value of the Base resistor determines how much input voltage is required and corresponding Base current to switch the transistor fully "ON".

0 comments:

Post a Comment